KRT'ye cevap verenler, cevap vermeyenler ve iyi cevap verenler: Predikte edilebilir mi?

Dr. Sabri DEMİRCAN Ondokuz Mayıs Üniversitesi Kardiyoloji Anabilim Dalı, Samsun

Kardiyak Resenkronizasyon Tedavisi (KRT)

- KRT, ventriküler dissenkroninin elektrokardiyografik kanıtlarının olduğu orta ve ciddi kalp yetersizliği olan hastalarda semptom, hastaneye yatış ve mortaliteyi azaltmada etkisi gösterilmiş önemli bir tedavi seçeneğidir.
- KRT yapılan hastaların önemli bir çoğunluğu bu yöntemden fayda görmekle birlikte, % 30 – 40 hasta ya hiç fayda görmemekte ya da çok az fayda görmektedir.

Kardiyak Resenkronizasyon Tedavisi Endikasyonlar (ESC 2012)

- Optimal medikal tedaviye rağmen semptomatik
- Orta ileri (NYHA sınıf II IV) kalp yetersizliği
- QRS ≥ 130 msn (Sol dal bloğu)
- LVEF ≤ 35%
- Normal sinüs ritm

KRT-P / KRT-D morbidite ve mortaliteyi azaltmak için önerilir (Sınıf I / A)

KRT'ye Cevap?

- 6 aylık takipte sistol sonu volümde % 15'den fazla azalma
- Klinik düzelme
 - Kardiyovasküler ölüm veya kalp yetersizliğine bağlı hastaneye yatış

KRT'ye Cevap - Sınıflama

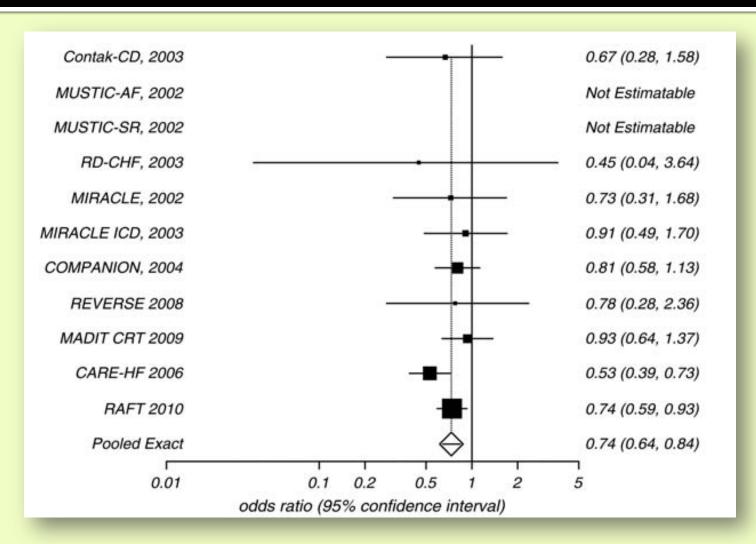
- Cevap verenler (responder)
- Cevap vermeyenler (non-responder)
- İyi cevap verenler (hiper / super responder)

Hiper / Super Responder

- Tedavi sonrası kalpte dramatik düzelme olması (normalleşmesi)
- Özellikle noniskemik dilate KMP hastalarında tanımlanmış (% 20)
- Bu normalleşme kalıcı ya da takipte hastalık progresyonuyla birlikte geçici olabilir.
- Uzun dönem prognoz oldukça iyidir.

Dissenkroni

- Elektrokardiyografi
- Ekokardiyografi
 - M-mod
 - TDI
- Gated SPECT


QRS Süresi

- Geniş QRS kompleksli hastaların (≥120 ms)
 1/3'ünde elektriksel dissenkroni göstergesi olarak mekanik dissenkroni tespit edilememektedir.
- Buna karşın dar QRS kompeksine (<120 ms) sahip hastaların ise yaklaşık %40-50'sinde mekanik dissenkroni vardır.

KRT'de QRS Süresinin Mortaliteye Etkisi

Sol dal bloğu & Diğerleri

- MADIT-CRT
- 1817 hastanın
 - % 70'inde LBBB
 - % 13'ünde RBBB
 - % 17'sinde nonspesifik ileti gecikmesi
- LBBB olan hastalarda KRT yapılmasının primer son nokta için
 HR 0.47 (95% CI 0.37-0.61)
- LBBB olmayan hastalarda ise HR 1.24 (95% CI 0.85-1.81)
- Çalışmanın tamamında LBBB olan hastaların kalp yetersizliğine bağlı olaylarda tedaviden faydası daha belirgin

Kardiyak Resenkronizasyon Tedavisi Endikasyonlar (ESC 2012)

- Optimal medikal tedaviye rağmen semptomatik
- Orta ileri (NYHA sınıf II IV) kalp yetersizliği
- QRS ≥ 150 msn (Sol dal bloğu dışı)
- LVEF ≤ 35%
- Normal sinüs ritm

KRT-P / KRT-D morbidite ve mortaliteyi azaltmak için önerilir (Sınıf IIa / A)

Ekokardiyografi

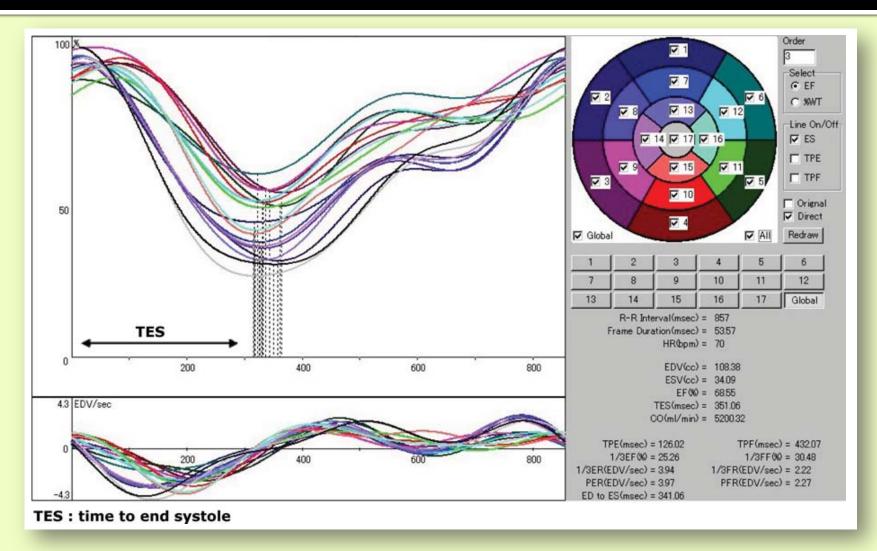
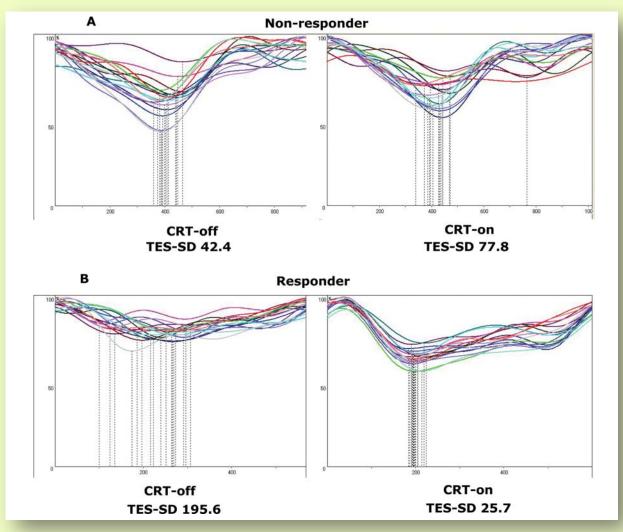


Table 1. Dyssynchrony Parameters and Cut-Off Values to Predict CRT Responders						
Dyssynchrony location	Parameter	Cutoff value				
Intraventricular	SPWMD: the shortest interval between the maximal posterior displacement of the septum and the maximal displacement of the left posterior wall. Anatomical M-mode imaging should not be used to measure SPWMD.	>130 ms				
Intraventricular	12Ts-SD: standard deviation of time from QRS to the largest peak systolic velocity in ejection phase for 12 LV segments.	>34.4 ms				
Intraventricular	Ts (lateral-septal): delay between time to the largest peak systolic velocity in ejection phase at basal septal and lateral segments.	>65 ms				
Interventricular	LV-PEP defined as the duration from onset of QRS to onset of pulsed Doppler LV out flow.	>140 ms				
Interventricular	IMD defined as the difference between LV-PEP and RV-PEP. IMD=LV-PEP-RV-PEP	>40 ms				
Intra- and interventricular	Sum of asynchrony: sum of LV asynchrony and LV-RV asynchrony measured by the time from QRS to regional onset of contraction (EMCT) with tissue pulsed Doppler. LV asynchrony; the difference between the maximum and the minimum EMCT in LV basal lateral, septal, and posterior wall. LV-RV asynchrony; the difference between the EMCT in the RV free wall and the maximum EMCT in LV basal lateral, septal, and posterior wall.	>102 ms				
Atrioventricular	DFT/RR: LV diastolic filling time measured by Doppler transmitral flow to cardiac cycle length.	<40%				

Seo Y, et al. Circ J 2011; 75: 1156 – 1163


Gated SPECT

Gated SPECT

Nakamura K, et al. Europace (2011) 13, 1731–1737

Miyokardiyal Rezerv

- Stress Ekokardiyografi
- Gated SPECT
- MRI

Stress Ekokardiyografi

- Sol ventrikül dissenkronisi
- Mitral regürgitasyon
- Kontraktil rezerv

LODO - CRT

- Çok merkezli, randomize, gözlem çalışması
- Dobutamin stress EKO ile kontraktil rezerv (% 5'den fazla artma) görülmesinin klinik ve ekokardiyografik yanıta (LESV'de % 10'dan fazla artış) etkisi

LODO - CRT

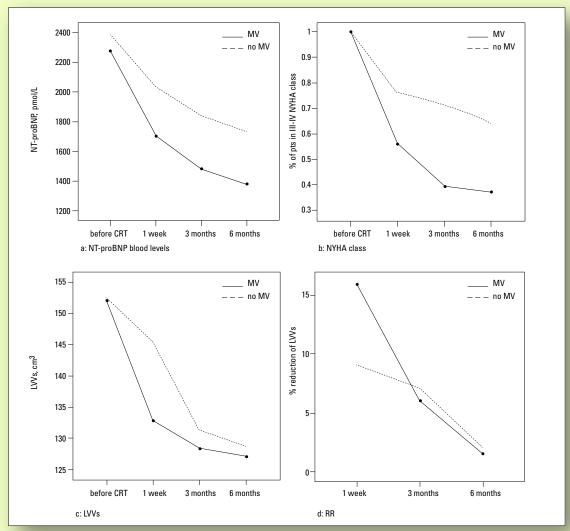


Table II. Multivariable analysis for identification of independent predictors of response to CRT

		Univariable analysis				Multivariable analysis			
	HR	P	959	% CI	HR	P	95	% CI	
Predictors of clinical response									
Inter-V dyssynchrony presence	2.88	.009	1.30	6.41	3.04	.007	1.36	6.78	
LVCR presence	2.25	.029	1.09	4.66	2.44	.017	1.17	5.07	
Predictors of echocardiographic response									
Inter-V dyssynchrony presence	3.47	.001	1.61	7.48	5.11	<.001	2.32	11.27	
LVCR presence	5.61	<.001	3.06	10.26	8.00	<.001	4.18	15.30	

İskemik KMP - Viabilite

Pugliese M, et al. Anadolu Kardiyol Derg 2012; 12: 132-41.

Kardiyak MR

CLINICAL RESEARCH

Cardiac Magnetic Resonance Assessment of Dyssynchrony and Myocardial Scar Predicts Function Class Improvement Following Cardiac Resynchronization Therapy

Kenneth C. Bilchick, MD,* Veronica Dimaano, MD,* Katherine C. Wu, MD,* Robert H. Helm, MD,* Robert G. Weiss, MD,* Joao A. Lima, MD,* Ronald D. Berger, MD, PhD,* Gordon F. Tomaselli, MD, FAHA, FACC, FHRS,* David A. Bluemke, MD, PhD, FAHA,\$ Henry R. Halperin, MD, FAHA,*†\$ Theodore Abraham, MBBS, MD, * David A. Kass, MD, FAHA,*†‡ Albert C. Lardo, PhD, FACC, FAHA*†‡ Baltimore, Maryland

Kardiyak MR

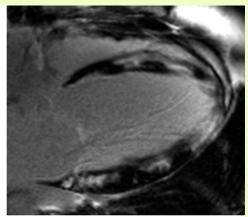


Table 2. MR-MT and DE-CMR for CRT Response

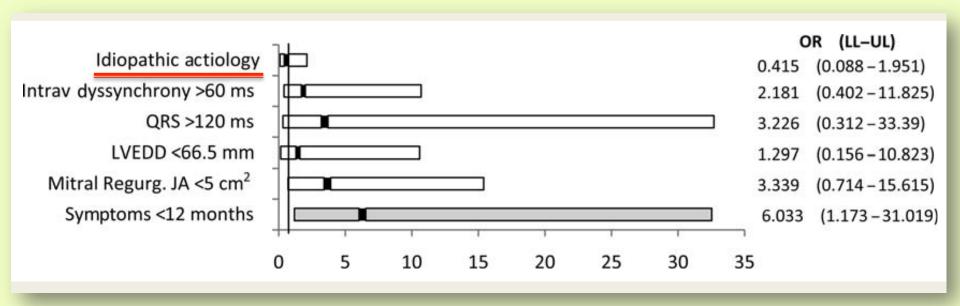
	Sensitivity	Specificity	PPV	NPV	Accuracy
% total scar <15%*	91	57	77	80	78
MR-MT CURE <0.75*	100	71	87	100	90
Both present*	100	86	93	100	95

*All numbers reported are percentages.

CRT = cardiac resynchronization therapy; CURE = circumferential uniformity ratio estimate; DE-CMR = delayed enhancement-cardiac magnetic resonance; MR-MT = magnetic resonancemyocardial tagging; NPV = negative predictive value; PPV = positive predictive value.

CURE: Circumferential uniformity ratio estimate (dissenkroni indeksi)

Hastalık Süresi


Table I Comparison of baseline characteristics of super-responders and the other patients

	Super-responders (n = 10)	Other patients $(n = 77)$	<i>P</i> -value
Male gender (%)	60	64	0.54
ICM (%)	50	34	0.32
Age (years)	60 ± 8	62 <u>±</u> 11	0.41
NYHA class	3.0 ± 0.7	3.1 ± 0.6	0.66
Duration of symptoms (months)	15.1 <u>+</u> 17.8	33.9 ± 35.7	0.01
QRS duration (ms)	153.5 <u>+</u> 30.8	143.5 ± 31.6	0.30
JA (cm ²)	5.4 ± 6.7	8.1 ± 5.4	0.04
LVEDD (mm)	69.3 ± 6.4	75.3 ± 10.0	0.04
LVESD (mm)	57.3 ± 7.5	63.6 ± 10.2	0.06
LVEDV (mL)	244.4 ± 72.8	267.9 ± 110.4	0.60
LVESV (mL)	192.8 <u>+</u> 72.3	204.8 ± 94.0	0.79
Sphericity index	0.62 ± 0.11	0.66 ± 0.16	0.48
LVEF (%)	22.5 ± 8.6	24.4 ± 6.5	0.43
LV dP/dt (mmHg/s)	515.8 <u>+</u> 247.4	476.3 ± 160.5	0.89
Intraventricular dyssynchrony (ms)	113.0 ± 96.7	78.8 ± 40.2	0.37
Interventricular dyssynchrony (ms)	57.0 ± 35.6	49.1 ± 23.4	0.35

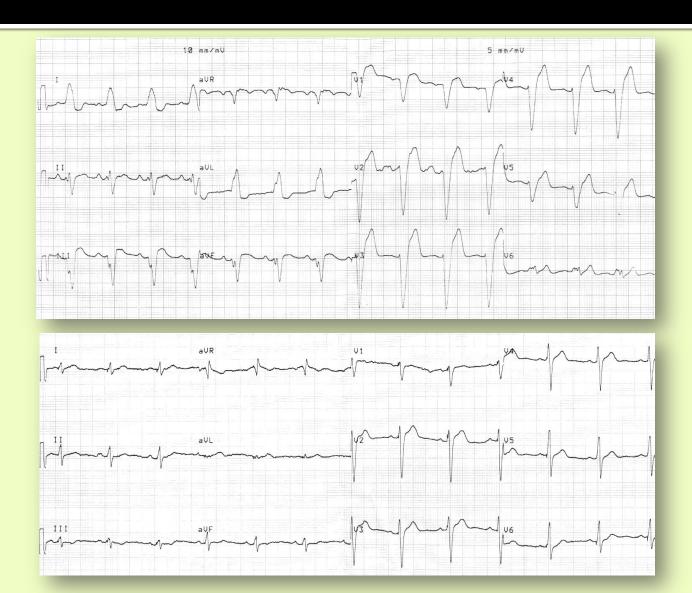
Antonio N, et al. Europace (2009) 11, 343-349

Hiper / Super Responder

PROSPECT

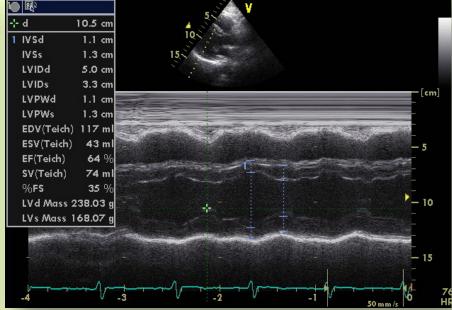
Table 3 Differences in baseline characteristics between super-responders, responders, non-responders, and negative responders

	SUPER (<i>n</i> = 108)	RESP $(n = 53)$	NON (n = 67)	NEG (n = 58)	P-value
Age, years	68 <u>+</u> 10	67 <u>+</u> 10	68 <u>+</u> 11	66 ± 13	0.37
Gender, male, n (%)	63 (58)	43 (81)	49 (73)	47 (81)	0.0026
NYHA class IV, n (%)	1 (1)	2 (4)	3 (4)	5 (9)	0.016
Non-ischaemic aetiology, n (%)	60 (56)	25 (47)	27 (40)	23 (40)	0.023
Diabetes, n (%)	27 (25)	16 (30)	22 (33)	16 (28)	0.52
History of AF, n (%)	21 (19)	11 (21)	10 (15)	11 (19)	0.71
History of VT, n (%)	19 (18)	13 (25)	25 (37)	23 (40)	0.0005
QRS duration, ms	166 ± 20	168 ± 26	163 ± 23	158 ± 24	0.033
LVEF, %	30 <u>+</u> 9	27 ± 8	29 <u>+</u> 11	29 ± 10	0.73
LVESV, mL	161 ± 88	196 <u>+</u> 81	168 ± 90	167 \pm 89	0.77
LVEDV, mL	223 ± 102	261 ± 93	230 ± 97	229 ± 100	0.83
LVFT/RR, %	43 <u>+</u> 9	43 <u>+</u> 8	46 ± 8	45 ± 10	0.051
IVMD, ms	50 ± 35	47 ± 34	44 ± 38	25 ± 39	0.0002
Ts-(lateral-septal), ms	68 ± 44	50 ± 38	49 ± 38	44 ± 35	0.0022


KRT'ye Cevap

- Uygun endikasyon
- Uygun implantasyon
- Dissenkroninin varlığı ve derecesi
- Etyoloji
- Hastalık süresi
- Hastalık ciddiyeti
- Skar boyutu

Örnek olgu



Örnek olgu

Teşekkürler...